Logo LVSN
EnglishAccueil
A proposPersonnesRecherchePublicationsEvenementsProfil
A propos
List of publications

Titre  
 
[11] Yoshua Bengio,
"Discussion of "The Neural Autoregressive Distribution Estimator"",
Journal of Machine Learning Research, pp. 38-39, 04 2011.
[12] James Bergstra, Yoshua Bengio and J. Louradour,
"Suitability of V1 energy models for object classification",
Neural Computation, pp. 774-790, 03 2011.
[13] Olivier Breuleux and Yoshua Bengio,
"Quickly generating representative samples from an rbm-derived process",
Neural Computation, pp. 2053-2073, 08 2011.
[14] Aaron Courville, James Bergstra and Yoshua Bengio,
"A spike and slab restricted Boltzmann machine",
Journal of Machine Learning Research - Proceedings Track, pp. 233-241, 04 2011.
[15] Xavier Glorot, Antoine Bordes and Yoshua Bengio,
"Deep sparse rectifier neural networks",
Journal of Machine Learning Research - Proceedings Track, pp. 315-323, 04 2011.
[16] Yoshua Bengio, F. Bastien, A. Bergeron, N. Boulanger-Lewandowski, T. Breuel and Y. Chherawala,
"Deep learners benefit more from out-of-distribution examples",
Journal of Machine Learning Research - Proceedings Track, pp. 164-172, 04 2011.
[17] Philippe Hamel, Simon Lemieux, Yoshua Bengio and Douglas Eck,
"Temporal Pooling and Multiscale Learning for Automatic Annotation and Ranking of Music Audio",
in International Society for Music Information Retrieval Conference, ISMIR 2011, pp. 729-734, 10 2011.
[18] Olivier Delalleau and Yoshua Bengio,
"Shallow vs. deep sum-product networks",
in Advances in Neural Information Processing Systems 24 (NIPS'11), pp. 666-674, 12 2011.
[19] Guillaume Desjardins, Aaron Courville and Yoshua Bengio,
"On tracking the partition function",
in Advances in Neural Information Processing Systems 24 (NIPS'11), pp. 2501-2509, 12 2011.
[20] James Bergstra, R. Bardenet, Yoshua Bengio and B. Kegl,
"Algorithms for hyper-parameter optimization",
in Advances in Neural Information Processing Systems, NIPS, pp. 2546-2554, 12 2011.
   
     
   
   

©2002-. Laboratoire de Vision et Systèmes Numériques. Tous droits réservés